334. Increasing Triplet Subsequence
Medium
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.
Formally the function should:
Return true if there exists i, j, k
such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return false.
Note: Your algorithm should run in O(n) time complexity and O(1) space complexity.
Example 1:
Input: [1,2,3,4,5] Output: true
Example 2:
Input: [5,4,3,2,1] Output: false
Solution:
At each index, we can maintain the smallest value we have got so far and second smallest after smallest index. now if we reach a index whose value is larger than smaller and smallest value. then we found our solution.
test case 2 3 1 4
in result, smallest is 1, secSmallest is 3. the correct answer is 2 3 4. need to get smallest in another loop.
5 4 3 2 1
it always meet n <= smallest, it won't go to the break branch.
class Solution {
public boolean increasingTriplet(int[] nums) {
int smallest = Integer.MAX_VALUE, secSmallest = Integer.MAX_VALUE;
int i = 0;
for(; i < nums.length; i++){
int n = nums[i];
if(n <= smallest){
smallest = n;
}else if(n <= secSmallest){
secSmallest = n;
}else{
break;
}
}
if(i == nums.length) return false;
return true;
}
}
Comments
Post a Comment